Membrane lipid composition and vesicle size modulate bilirubin intermembrane transfer. Evidence for membrane-directed trafficking of bilirubin in the hepatocyte.
نویسندگان
چکیده
To characterize the mechanisms underlying intracellular bilirubin transport, stopped-flow fluorometry was utilized to study the effects of membrane vesicle size and lipid composition on the kinetics of unconjugated bilirubin movement between model and native hepatocyte membranes. Bilirubin transfer rates declined asymptotically with increasing donor vesicle diameter, due primarily to a 1.4 kcal.mol-1 decrease in the entropy of activation for the larger vesicles. The incorporation of phosphatidylethanolamine and phosphatidylserine significantly enhanced the dissociation of bilirubin from phosphatidylcholine vesicles. Cholesterol induced a biphasic effect on the transfer rate constant; an initial decrease in rate from 248 to 217 s-1 associated with cholesterol:phospholipid ratios up to 20% was followed by a dramatic rise to 312 s-1 as the cholesterol concentration was increased to 70 mol %. The bilirubin dissociation rate from isolated rat liver endoplasmic reticulum (9.1 s-1) was significantly slower than for both basolateral and canalicular plasma membranes, which exhibited rate constants of 11.7 and 25.8 s-1, respectively. Collectively, these data suggest that the cholesterol: phospholipid ratio is the principal determinant of bilirubin dissociation from membranes. We postulate that the inherent cellular membrane cholesterol gradient in the hepatocyte creates a directed flux of bilirubin from the plasma membrane to teh endoplasmic reticulum and represents a potential driving force for intracellular bilirubin transport.
منابع مشابه
Influence of glutathione S-transferase B (ligandin) on the intermembrane transfer of bilirubin. Implications for the intracellular transport of nonsubstrate ligands in hepatocytes.
To examine the hypothesis that glutathione S-transferases (GST) play an important role in the hepatocellular transport of hydrophobic organic anions, the kinetics of the spontaneous transfer of unconjugated bilirubin between membrane vesicles and rat liver glutathione S-transferase B (ligandin) was studied, using stopped-flow fluorometry. Bilirubin transfer from glutathione S-transferase B to p...
متن کاملTwo Distinct Mechanisms for Bilirubin Glucuronide Transport by Rat Bile Canalicular Membrane
Bilirubin is conjugated with glucuronic acid in hepatocytes and subsequently secreted in bile. The major conjugate is bilirubin diglucuronide. Using sealed vesicles which are primarily derived from the canalicular (CMV) and sinusoidal (SMV) membrane vesicle domains of the plasma membrane of hepatocytes, we demonstrated that bilirubin glucuronides are transported byCMV by both ATPand membrane po...
متن کاملLocalization of bilirubin in phospholipid bilayers by parallax analysis of fluorescence quenching.
It has been proposed that the neurotoxicity observed in severely jaundiced infants results from the binding of unconjugated bilirubin to nerve cell membranes. However, despite potentially important clinical ramifications, there remains significant controversy regarding the physical nature of bilirubin-membrane interactions. We used the technique of parallax analysis of fluorescence quenching (C...
متن کاملAn evidence for a potassium channel in endoplasmic reticulum based on single channel recording in bilayer lipid membrane
Introduction Numerous studies have demonstrated the presence of potassium selective channels in membranes internal organelles. These channels are essential to a large variety of cellular processes including intracellular 2+ a signaling, protein recycling, charge neutralization and cell protection. In contrast to the sarcoplasmic reticulum + here potassium channels have been clearly ...
متن کاملMolecular topography imaging by intermembrane fluorescence resonance energy transfer.
Fluorescence resonance energy transfer (FRET) between lipid-linked donor and acceptor molecules in two apposing lipid bilayer membranes is used to resolve topographical features at an intermembrane junction. Efficient energy transfer occurs when the membranes are apposed closely, which creates an image, or footprint, that maps the contact zone and reveals nanometer-scale topographical structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 269 30 شماره
صفحات -
تاریخ انتشار 1994